
WBPA0520A 0.5- 2.0 GHz LOW NOISE WIDE BAND POWER AMPLIFIER

Key Features

- 0.5 ~ 2.0 GHz
- 1.2 dB Noise Figure
- 43.0 dBm Output IP₃
- 28.0 dB Gain
- +/-0.50 dB Gain Flatness
- 26.0 dBm P_{1dB}
- 1.5:1 VSWR
- Single Power Supply
- >68 Years MTBF
- Unconditional Stable
- RoHS Compliant

Product Description

WBPA0520A is integrated with WanTcom proprietary low noise amplifier technology, high frequency micro electronic assembly techniques, and high reliability design to realize optimum low noise figure, wide bandwidth, high linearity, and unconditional stable performances together. With single DC voltage operation, the amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard SMA connectorized WP-5 Gold plated housing.

CAUTION:

Ŧ

ELECTROSTATIC DISCHARGE SENSITIVE

The amplifier is designed to meet the rugged standard of MIL-STD-202g.

Applications

- Mobile Infrastructures
- VHF & UHF
- GPS
- PCS & 3G
- Security System
- Measurement
- Fixed Wireless

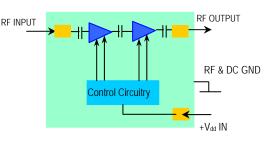
Specifications

Summary of the electrical specifications WBPA0520A at room temperature

RoHS

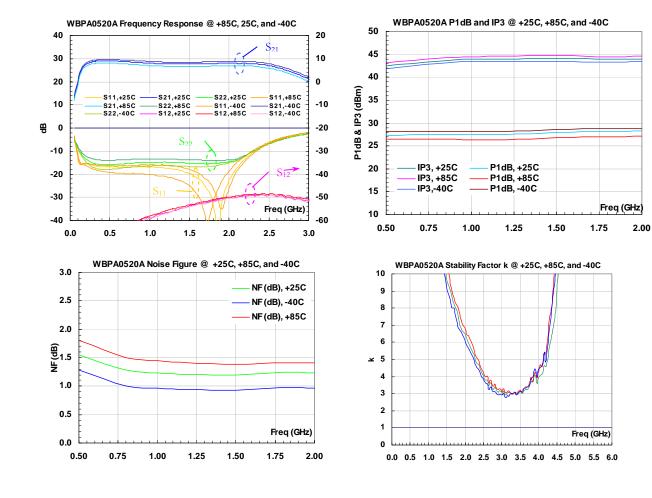
Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	0.5 – 2.0 GHz	26	28	30	dB
2	Gain Variation	ΔG	0.5 – 2.0 GHz		+/- 0.5	+/-1.0	dB
3	Input VSWR	SWR ₁	0.5 – 2.0 GHz		1.35:1	1.5:1	Ratio
4	Output VSWR	SWR ₂	0.5 – 2.0 GHz		1.5:1	1.8:1	Ratio
5	Reverse Isolation	S ₁₂	0.5 – 2.0 GHz		42		dB
6	Noise Figure	NF	0.5 – 2.0 GHz		1.2	1.5	dB
7	Output 1dB Gain Compression Point	P _{1dB}	0.5 – 2.0 GHz	24	26		dBm
8	Output-Third-Order Interception Point	IP ₃	Two-Tone, Pout +10 dBm each, 1 MHz separation	40	43		dBm
9	Current Consumption	I _{dd}	V _{dd} = +12 V		220		mA
10	Power Supply Voltage	V _{dd}		+11.5	+12	+12.5	V
11	Thermal Resistance, Junction to case	R _{th,c}	Last stage transistor, V_{ds} = 9.0V, I_{ds} = 150 mA			50	°C/W
12	Operating Temperature	T _o		-40		+85	°C
13	Maximum Input CW RF Power	PIN, MAX	DC – 6 GHz			13	dBm

Absolute Maximum Ratings


Parameters	Units	Ratings
DC Power Supply Voltage	V	-0.5, +13V
Drain Current	mA	250
Total Power Dissipation	W	3
Input CW RF Power	dBm	13
Junction Temperature	°C	170
Storage Temperature	°C	-55 ~ 125
Operating Temperature	°C	-40 ~ 85
$R_{th,c}$, Last Stage Transistor Biased at Vds = 9.0V, Ids = 150 mA.	°C/W	50

Operation of this device above any one of these parameters may cause permanent damage.

Ordering Information


Model Number WBPA0520A

Functional Block Diagram

Specifications and information are subject to change without notice.

Outline, WP-5 Housing

UNITS: BODY: Finish: RF Connector: V _{dd} PWR:	INCH [mm] Brass Gold Plating SMA F Gold Feed through	0.410 (10.41) (10.41) (10.41) (10.41) (10.41) (10.41) (10.41) (10.41) (10.41) (10.41) (10.72) (10.7
		0.215 15.461 0.100 0.880 122.351

1.080

Specifications and information are subject to change without notice.

REV C

November 2017

Application Notes:

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connectors. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. DC Power Line Connection

Strip the insulation layer at the end of DC power supply wire. The stripped length should be around 0.100° to 0.200° . The 24 ~ 26 American Wire Gauge wire is suitable. Wound the stripped wire about 3/4 to 1 turn on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering joint by a Q-tip with alcohol to remove the flux and residue.

Do not use large soldering iron tip with more than 750 degree Fahrenheit to solder the wire and feed thru pin. Damage may occur to the feed thru. 0.010" size tip with 750 degree Fahrenheit temperature setting is suitable for the soldering works.

Repeat the process to solder the DC return wire on the ground turret. Higher temperature and larger tip can be used for this ground soldering.

C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.

High thermal conductivity thermal film such as T-gon is needed between the bottom of the amplifier and the heat sink surface. Refer to AN-155 for heat sink design, <u>http://wantcominc.com/engineering_tools.htm</u>.

Specifications and information are subject to change without notice.