

Key Features

- 0.8 ~ 1.3 GHz
- 1.2 dB Noise Figure
- 20.0 dBm Output IP₃
- 30.0 dB Gain
- +/-0.30 dB Gain Flatness
- 6 dBm P_{1dB}
- 1.3:1 VSWR Fully Matched
- Unconditional Stable, k > 1
- >300 Years MTBF
- RoHS Compliant
- MLS-1 Moisture Sensitivity
- Level

Product Description

WHM0815AE integrates WanTcom proprietary low noise amplifier technologies, high frequency micro electronic assembly techniques, and high reliability designs to realize optimum low noise figure, wideband, and high performances together. With single +3.0V DC operation, the amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard 0.25" x 0.20" x 0.06" surface mount package.

The amplifier is designed to meet the rugged standard of MIL-STD-883.

Applications

- Mobile Infrastructures
- GPS
- Avionics
- Defense
- Security System
- Measurement
- Fixed Wireless

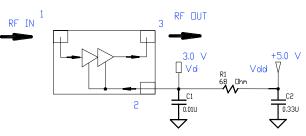
Spe	ecifi	cati	ons	

Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	0.8 – 1.3 GHz		30		dB
2	Gain Variation	∆G	0.8 – 1.3 GHz		+/-0.30	+/- 0.75	dB
3	Input VSWR	SWR ₁	0.8 – 1.3 GHz		1.3:1	1.5:1	Ratio
4	Output VSWR	SWR ₂	0.8 – 1.3 GHz		1.3:1	1.5:1	Ratio
5	Reverse Isolation	S ₁₂	0.8 – 1.3 GHz	30	40		dB
6	Noise Figure	NF	0.8 – 1.3 GHz		1.2	1.4	dB
7	Output Power 1dB Compression Point	P _{1dB}	0.8 – 1.3 GHz	4	6		dBm
8	Output-Third-Order Interception point	IP_3	Two-Tone, P _{out} = -10 dBm each, 1 MHz separation	17	20		dBm
9	Current Consumption	l _{dd}	V _{dd} = +5.0 V, with a 68.0 Ohm series resistor		30		mA
10	Power Supply Operating Voltage	V _d		+2.5	+3	+3.5	V
11	Thermal Resistance	R _{th,c}	Junction to case			215	°C/W
12	Operating Temperature	T。		-54		+100	°C
13	Maximum Average RF Input Power	PIN, MAX	DC – 6.0 GHz			5	dBm

Summary of the key electrical specifications at room temperature, V_{dd} =5.0V, R_1 = 68.0 Ohm.

Absolute Maximum Ratings

Parameters	Units	Ratings
DC Power Supply Voltage	V	7.0
Drain Current	mA	50
Total Power Dissipation	mW	250
RF Input Power	dBm	5
Channel Temperature	°C	150
Storage Temperature	°C	-65 ~ 150
Operating Temperature	°C	-55 ~ +100
Thermal Resistance	°C/W	215

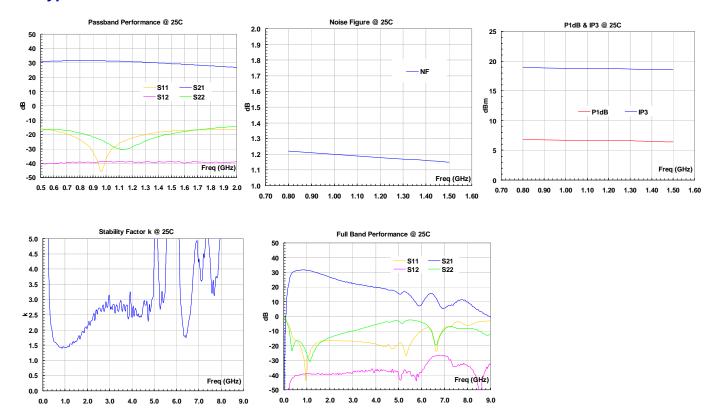

Operation of this device beyond any one of these parameters may cause permanent damage.

Ordering Information

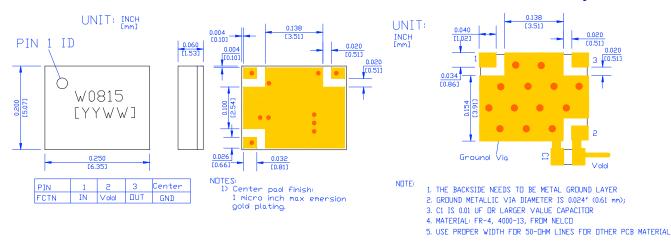
Model Number

WHM0815AE

Functional Block Diagram


Adjust R1 Value for desired Idd or Gain.

Specifications and information are subject to change without notice.


Waffle pack with the capacity of 100 pieces (10 x 10) is used for the packing. Contact factory for tape and reel packing option for higher volume order.

Typical Data

Outline, WHM-11

Specifications and information are subject to change without notice.

Application Notes

 R_1 selection is important to the total DC bias current and thus the gain and P_{1dB} , etc. For example, a typical 30 mA DC bias current setting from a +5V DC power supply requires a 68.0 Ohm pull-up resistor to drop the voltage from +5V to +3.0V. R_1 also provides a negative feedback for the DC bias current. This feedback is particular important for the temperature stability and the DC current consistency between each amplifier module in the volume production.

For DC voltage other than 5.0V, the R_1 value is determined by the following equation:

$$R_1 = (V_{dd} - V_d) / I_{dd}$$

Make sure the R₁ power rating is sufficient for the reliability consideration.
