1.5T LOW NOISE LOW INPUT IMPEDANCE PRE-AMPLIFIER

With its low input impedance, WMA1R5A-R5 is

designed for 50 Ohm source impedance multi-

channel coil applications. The pre-amp

maintains excellent noise figure performance

over source impedance variation that either

comes from the different loads to the coils or

not ideal design implementation of the coils.

Moreover, the pre-amp allows higher source

impedance design to increase the blocking

impedance while maintaining superior SNR due

The amplifier has 0.60" x 0.40" x 0.10" surface

REV B May 2019

Key Features

WMA1R5A-R5

- For 50 Ohm Source Impedance
- 1.5T Frequency of 63.8 MHz
- 0.5 Ohm Input Impedance
- 0.45 dB Noise Figure
- 30.0 dBm Max PIN ٠
- 20.0 dBm Output IP₃
- 28.0 dB Gain
- 10.0 dBm P_{1dB}
- 1.22:1 Output VSWR
- Unconditional Stable, k>1
- Single Power Supply
- None Magnetic

Product Description

to large equal noise circles.

mount package.

Applications ELECTROSTATIC DISCHARG

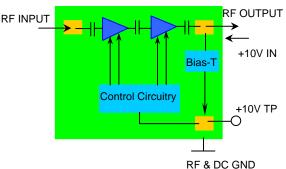
CAUTION

Ø

- Magnetic Resonance Imaging
- **RF** Measurement
- Medical
- **Current Sensor** •

Specifications

Other frequencies and impedance available!


Summary of the key electrical specifications at room temperature, which are test	ed in WanTcom test fixture, 80051

Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	63.8 MHz	27.5	28.0	28.5	dB
2	Gain Variation	ΔG	63.8 +/- 1 MHz			+/- 0.1	dB
	3 Input Impedance	RE [Zin]	63.8 MHz	0.3	0.5	0.7	Ohm
3		IM [Zin]	63.8 MHz, with test fixture 80051	-2.0	0	2.0	Ohm
4	Output VSWR, 50 Ohm Impedance	SWR ₂	63.8 MHz			1.22:1	Ratio
5	Reverse Isolation	S ₁₂	63.8 MHz	63	70		dB
6	Noise Figure	NF	63.8 MHz, Z _s = 50 Ohm		0.45	0.55	dB
7	Output Power 1dB Compression Point	P _{1dB}	63.8 MHz	7	10		dBm
8	Output-Third-Order Interception point	IP ₃	Two-Tone, P _{out} = 0 dBm each, 1 MHz separation	16	20		dBm
9	Current Consumption	l _{dd}	V _{dd} = +10.0 V		16		mA
10	Power Supply Operating Voltage	V_{dd}		+7	+10	+11	V
11	Thermal Resistance	R _{th,c}	Junction to case			220	°C/W
12	Operating Temperature	T₀		+10		+60	°C
13	Maximum RF Input Power	P _{IN, MAX}	DC – 6.0 GHz, 10% Duty Cycle, Z _s = 50 Ohm			30	dBm
14	Saturate Recover Time	t _{sr}	10% to 90% from 20 dBm Pin, $Z_s = 50$ Ohm		8	10	uS
15	ESD Protection, None Contact	V _{ESDN}	Output Port			16	kV
16	ESD Protection, Direct Contact	V _{ESD}	Output Port			6	kV

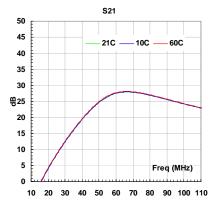
Absolute Maximum Ratings

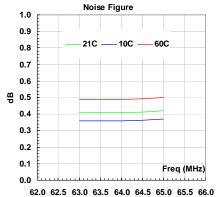
Units	Ratings
V	12.0
mA	30
mW	350
dBm	30
°C	150
°C	-65 ~ 150
°C	0 ~ +70
°C/W	215
	V mA mW dBm °C °C °C

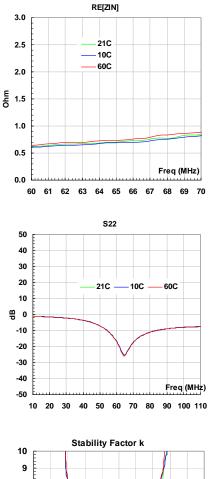
Functional Block Diagram

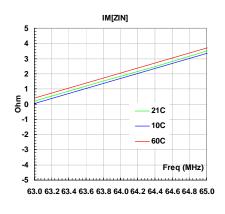
¹ The last stage transistor dominates the heat dissipation. The drain bias voltage is +6V and the drain current is 15.0 mA. The total power dissipation of the last stage transistor is thus 90 mW. The junction temperature arise 0.09 x 220 = 20 (°C).

Specifications and information are subject to change without notice.




Ordering Information


Model Number WMA1R5A-R5


Waffle shell is used for the packing. Contact factory for tape and reel packing option for higher volume order.

Typical Data

S12

21C

10C

0

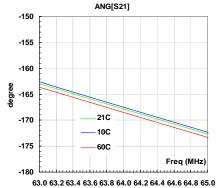
-10

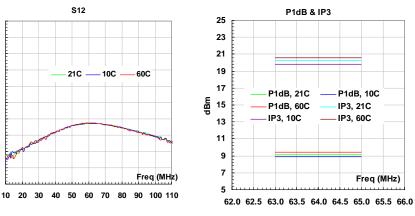
-20

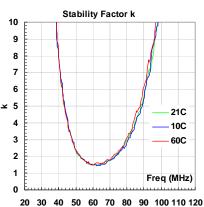
-30

-40

-60

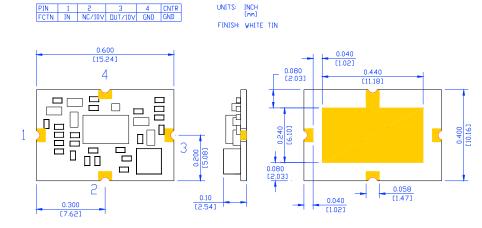

-70


-80


-90

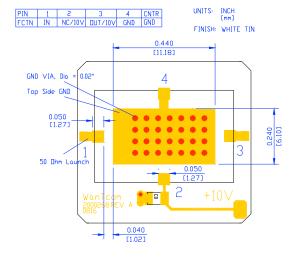
-100

뜅 -50



Specifications and information are subject to change without notice.

WanTcom, Inc * Phone 01 952 448 6088 * FAX: 01 952 448 7188 * e-mail: sales@wantcominc.com * Web site: www.wantcominc.com



Outline,

UNITS:

Foot Print/Mounting Layout

Specifications and information are subject to change without notice.

Application Notes:

A. Motherboard Layout

The recommended motherboard layout is shown in the diagram of **Foot Print/Mounting Layout**. Sufficient quantities of ground vias on center ground pad are essential for the RF grounding. The width of the 50-Ohm microstrip lines at the input and output RF ports may be different for different property of the substrate. The ground plane on the backside of the substrate is needed to connect the center ground pad through the vias. The ground plane is also essential for the 50-Ohm microstrip line launches at the input and output ports.

In order to have stable pre-amp in the coil system, the minimum system isolation of 63 dB between the input and output soldering pads for the preamp with all the components including the coils on the feed board is required. Poor system isolation can introduce external feedback either in pass band or off band and cause the pre-amp parasitic oscillation. Measure the S_{12} or S_{21} between the input and output pads without the installation of the pre-amp is essential to insure the stable preamp operation.

The +10V DC voltage can be applied at Pin 2 or at the output Pin 3. There is a built-in bias-T at the output port to separate the RF output signal and the input +10V DC power supply. Pin 2 and Pin 3 are DC connected internally.

No DC block capacitor is required at input port.

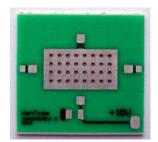


Fig. 1 Example of the test board

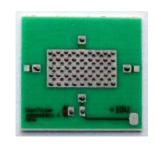


Fig. 2 Dispensed solder paste

Fig. 3 Assembled preamp

B. Assembly

The high temperature solder is used internally center chip assembly. The melting temperature point of the high temperature solder is around 240 °C. Thus, melting temperature of the solder paste should be way below 240 °C for assembling the preamp on the test board or feed board.

For high reliability product, Lead SN63/Pb63 solder paste, which melting temperature point being around 183 ⁰C, is recommended for the assembly purpose.

For RoHS requirement, Bismuth based Lead free solder paste such as 60Sn/40Bi is suitable for the assembly.

Warning: regular SAC305 RoHS reflow process will damage the pre-amp!

The solder paste can be dispensed by a needle manually or driven by a compressed air. **Figure 2** shows the example of the dispensed solder paste pattern. Each solder paste dot is in the diameter of $0.005^{\circ} \sim 0.010^{\circ}$ ($0.125 \sim 0.250$ mm).

For volume assembly, a stencil with 0.006" (0.15 mm) is recommended to print the solder paste on the circuit board.

For more detail assembly process, refer to AN-109 at <u>www.wantcominc.com</u> website.

Specifications and information are subject to change without notice.