Key Features

0.10 ~ 1.6 GHz

20.0 dB Gain

1.5:1 VSWR Single Power Supply RoHS Compliant

19.0 dBm P_{1dB}

0.7 dB Noise Figure

33.0 dBm Output IP₃

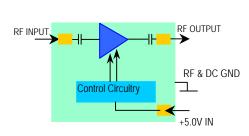
Applications

Applications

- 50 Ohm Impedance
- Mobile Infrastructures
- VHF
- UHF
- GPS
- Fixed Wireless

Absolute Maximum Ratings

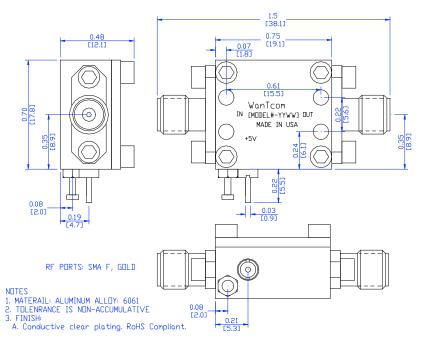
Parameters	Units	Rating		
DC Power Supply Voltage	V	6.0		
Drain Current	mA	90		
Total Power Dissipation	mW	450		
RF Input Power	dBm	10		
Channel Temperature	°C	150		
Storage Temperature	°C	-55~125		
Operating Temperature	°C	-40~85		
Thermal Resistance	°C/W	220		

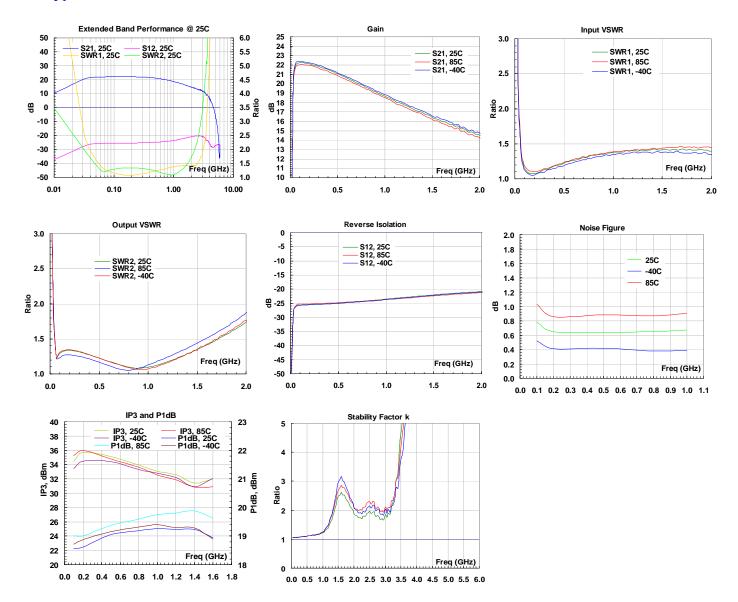

Operation of this device above any one of these parameters may cause permanent damage.

Specifications

MADE IN USA

Summary of the electrical specifications WZA203 at room temperature


Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	0.10 – 1.6 GHz		20		dB
2	Gain Variation	ΔG	0.10 – 1.6 GHz		+/- 2.5		dB
3	Input VSWR	SWR ₁	0.10 – 1.6 GHz		1.5:1	1.7:1	Ratio
4	Output VSWR	SWR ₂	0.10 – 1.6 GHz		1.5:1	1.7:1	Ratio
5	Reverse Isolation	S ₁₂	0.10 – 1.6 GHz		25		dB
6	Noise figure	NF	0.10 – 1.6 GHz		0.7	1.0	dB
7	Output Power 1dB compression Point	P _{1dB}	0.10 – 1.6 GHz	17	19		dBm
8	Output-Third-Order Interception point	IP ₃	Two-Tone, P _{out} = 0 dBm each, 1 MHz separation	29	33		dBm
9	Current Consumption	I _{dd}	@ 25 °C		60		mA
10	Power Supply Voltage	V_{dd}		+4.7	+5.0	+5.3	V
11	Thermal Resistance	R _{th,c}	Junction to case			220	°C/W
12	Operating Temperature	To	Case temperature at the bottom of the housing	-40		+85	°C
13	Maximum Average RF Input Power	P _{IN, MAX}	DC – 13 GHz			10	dBm
14	Spurious	P _{spur}	DC – 13 GHz	-70			dBc


Outline, WP-30 Housing

Ordering Information

Model Number	WZA203

Typical Performance

Application Notes

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable connector to the amplifier connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. Mounting the Amplifier

Use three pieces of #2-56 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening after any shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount the screws.

C. Soldering DC Power Supply Wires

Always turn off the DC power supply of +5.0V when connect the DC cables to the amplifier. Only turn on the power supply after the correct connections are confirmed. Any accidentally short the live +5.0V to the ground while applying DC cable to the DC feed thru pin may damage the amplifier.

The AWG of 18 \sim 24 insulated wires are recommended for the DC cables. Red and Black color wires are recommended for +5.0V and its return for easier identification of the polarity to avoid the wrong DC bias. Only $\frac{3}{4}$ to 1 turn wrap around the feed thru pin and ground turret per the IPC standard. The soldering iron tip size between 0.010" to 0.020" is recommended. The temperature of the tip shall be set around 700 0 F in order to avoid too high temperature. The DC Pin will be damaged if it is exposed too high temperature for too long.
