

Key Features

- 50 Ohm Impedance
- 925 ~ 960 MHz
- 2.5 dB Noise Figure
- 55.0 dBm Output IP₃
- 43.0 dB Gain
- 47.0 dBm P_{1dB}
- 1.22:1 VSWR
- Single Power Supply
- >34 years MTBF
- **Unconditional Stable**
- Infinite Load VSWR Protection
- **RoHS** Compliant

Product Description

WPA09-4555A integrates WanTcom proprietary low noise amplifier technology, high frequency micro electronic assembly techniques, and high reliability design to realize optimum low noise figure, wideband, high linearity, and unconditional stable performances together. With single +28V operation, the amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard SMA connectorized WP-1M clear plated housing.

The amplifier is designed to meet the rugged standard of MIL-STD-202g.

Applications

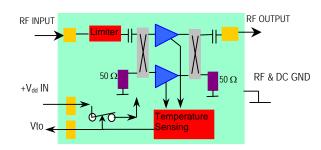
- Mobile Infrastructures
- GSM
- **Fixed Wireless**

Ordering Information

Model No. WPA09-4555A

Specifications

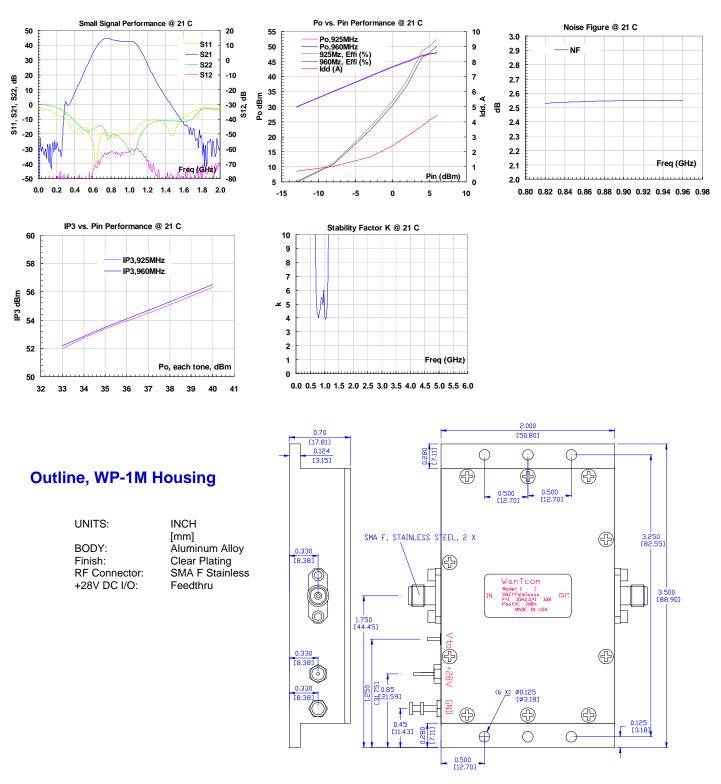
Summary of the electrical specifications WPA09-4555A at room temperature


Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	925 – 960 MHz	41	43		dB
2	Gain Variation	ΔG	925 – 960 MHz		+/-0.3	+/- 0.5	dB
3	Input Return Loss	S ₁₁	925 – 960 MHz	16	20		dB
4	Output Return Loss	S ₂₂	925 – 960 MHz	16	20		dB
5	Reverse Isolation	S ₁₂	925 – 960 MHz		70		dB
6	Noise figure	NF	925 – 960 MHz		2.5		dB
7	Output Power 1dB compression Point	P _{1dB}	925 – 960 MHz	45	47		dBm
8	Output-Third-Order Interception point	IP ₃	Two-Tone, P _{out} +37 dBm each, 1 MHz separation	53	55		dBm
9	Current Consumption	l _{dd}	V _{dd} = +28 V, 0.65 A quiescent DC bias			4.5	А
10	Power Supply Voltage	V _{dd}	925 – 960 MHz	26	28	30	V
11	Base Temperature Monitoring Output	V _{to}	0.50 V at 0 °C, 10 mV per °C		10		mV/°C
12	Thermal Resistance	R _{th,c}	Junction to case			1.3	°C/W
13	Operating Temperature	To	Base Plate	0		+70	°C
14	Maximum Average RF Input Power	PIN, MAX	DC – 6 GHz			30	dBm

Absolute Maximum Ratings

Parameters	Units	Ratings
DC Power Supply Voltage	V	+30V
Drain Current	mA	5A
Total Power Dissipation	W	170
RF Input Power	dBm	10
Channel Temperature	°C	150
Storage Temperature	°C	-55 ~ 150
Operating Temperature	°C	-40 ~ +85
Thermal Resistance	°C/W	1.2 ⁰ C/W*

Operation of this device above any one of these parameters may cause permanent damage. *One of the last stage power transistor, Vdd = 28V, Id=2.5A Max.


Functional Block Diagram

Specifications and information are subject to change without notice.

Typical Data

Specifications and information are subject to change without notice.

2/3

REV E

June 2014

Application Notes:

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. Mounting the Amplifier

Use six pieces of #4-40 with longer than 3/8" screws for mounting the amplifier on a metal-based heat sink. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them. Proper heat sink is required for continuous operation.
